2019-08-14 17:50:50 +00:00
|
|
|
import ExcelReaders
|
|
|
|
import DataFrames
|
|
|
|
|
2019-08-15 16:28:41 +00:00
|
|
|
POPSIZE = 5
|
|
|
|
mu = 1
|
|
|
|
lambda = 4
|
2019-08-16 13:52:28 +00:00
|
|
|
GENLIMIT = 20
|
|
|
|
TARGETCALORIES = 1000
|
2019-08-15 16:28:41 +00:00
|
|
|
|
2019-08-14 17:50:50 +00:00
|
|
|
data = ExcelReaders.readxlsheet("./data/nutrional_information_5917.xlsx", "Sheet2", skipstartrows=1)
|
|
|
|
header = ExcelReaders.readxlsheet("./data/nutrional_information_5917.xlsx", "Sheet2", nrows=1)
|
|
|
|
|
|
|
|
# Convert to symbols to build header row.
|
|
|
|
for i = 1:length(header)
|
|
|
|
tmp = header[i]
|
|
|
|
tmp = Symbol(tmp)
|
|
|
|
header[i] = tmp
|
|
|
|
end
|
|
|
|
header = dropdims(reshape(header, :, 1), dims=2)
|
|
|
|
df = DataFrames.DataFrame()
|
|
|
|
|
|
|
|
# Finally, construct our dataframe
|
|
|
|
for i = 1:length(header)
|
|
|
|
df[header[i]] = data[2:end, i]
|
|
|
|
end
|
|
|
|
|
2019-08-16 13:52:28 +00:00
|
|
|
function mutate(parent)
|
|
|
|
randomCandidate(4)
|
2019-08-14 17:50:50 +00:00
|
|
|
end
|
|
|
|
|
2019-08-16 13:52:28 +00:00
|
|
|
"""
|
|
|
|
fitness(candidate::DataFrames.DataFrame)
|
|
|
|
|
|
|
|
Calculate the fitness of the candidate, which is the
|
|
|
|
absolute value of the difference of TARGETCALORIES and the sum
|
|
|
|
of all calories in the meal.
|
|
|
|
"""
|
2019-08-15 16:28:41 +00:00
|
|
|
function fitness(candidate::DataFrames.DataFrame)
|
2019-08-16 13:52:28 +00:00
|
|
|
abs(TARGETCALORIES - sum(+, candidate[:Calories]))
|
2019-08-14 17:50:50 +00:00
|
|
|
end
|
|
|
|
|
|
|
|
|
2019-08-14 14:15:24 +00:00
|
|
|
function randRow()
|
|
|
|
# Generate a random row index
|
2019-08-16 14:28:51 +00:00
|
|
|
abs(rand(Int) % size(df, 1)) + 1
|
2019-08-14 14:15:24 +00:00
|
|
|
end
|
|
|
|
|
2019-08-15 16:28:41 +00:00
|
|
|
function randomCandidate(n::Integer)
|
2019-08-14 14:15:24 +00:00
|
|
|
# Select n random rows from the dataset.
|
|
|
|
rows = [randRow() for i = 1:n]
|
|
|
|
df[rows, :]
|
2019-08-15 16:28:41 +00:00
|
|
|
end
|
|
|
|
|
2019-08-16 13:52:28 +00:00
|
|
|
function generateInitialPopulation(lambda::Integer, candidateSize::Integer)
|
|
|
|
[randomCandidate(candidateSize) for i = 1:lambda]
|
2019-08-15 16:28:41 +00:00
|
|
|
end
|
|
|
|
|
2019-08-16 13:52:28 +00:00
|
|
|
function main()
|
|
|
|
# Generate the initial population.
|
2019-08-16 14:28:51 +00:00
|
|
|
println("Entering main.")
|
2019-08-16 13:52:28 +00:00
|
|
|
pop = generateInitialPopulation(lambda, 4)
|
|
|
|
best = nothing
|
|
|
|
generationNum = 0
|
|
|
|
fit = nothing
|
|
|
|
parents = nothing
|
|
|
|
|
|
|
|
while generationNum != GENLIMIT || (best != nothing && fitness(best) != 0)
|
2019-08-16 14:28:51 +00:00
|
|
|
println("Generation $generationNum")
|
2019-08-16 13:52:28 +00:00
|
|
|
|
|
|
|
# Assess the fitness of parents
|
|
|
|
for parent in pop
|
|
|
|
fit = fitness(parent)
|
|
|
|
if best === nothing || fit < fitness(best)
|
|
|
|
best = parent
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
bestFitness = fitness(best)
|
|
|
|
|
2019-08-16 14:28:51 +00:00
|
|
|
println("Sorting by fitness")
|
2019-08-16 13:52:28 +00:00
|
|
|
sort!(pop, by = x -> fitness(x))
|
|
|
|
parents = pop[1:mu]
|
|
|
|
pop = parents
|
|
|
|
|
2019-08-16 14:28:51 +00:00
|
|
|
println("Breeding new generation")
|
|
|
|
print("Parents $parents")
|
2019-08-16 13:52:28 +00:00
|
|
|
for p in parents
|
2019-08-16 14:28:51 +00:00
|
|
|
for i = 1:4
|
|
|
|
print("breed")
|
2019-08-16 13:52:28 +00:00
|
|
|
push!(pop, mutate(p))
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
2019-08-16 14:28:51 +00:00
|
|
|
print("Generation $generationNum, best $best, fitness $bestFitness")
|
2019-08-16 13:52:28 +00:00
|
|
|
generationNum += 1
|
|
|
|
end
|
|
|
|
|
|
|
|
end
|
2019-08-15 16:28:41 +00:00
|
|
|
# search(generateInitialPopulation())
|