Really filling out the experiment with knobs to turn, getting better
This commit is contained in:
parent
cb61b910d7
commit
673e28b02c
@ -4,6 +4,8 @@ import DataFrames
|
|||||||
POPSIZE = 5
|
POPSIZE = 5
|
||||||
mu = 1
|
mu = 1
|
||||||
lambda = 4
|
lambda = 4
|
||||||
|
GENLIMIT = 20
|
||||||
|
TARGETCALORIES = 1000
|
||||||
|
|
||||||
data = ExcelReaders.readxlsheet("./data/nutrional_information_5917.xlsx", "Sheet2", skipstartrows=1)
|
data = ExcelReaders.readxlsheet("./data/nutrional_information_5917.xlsx", "Sheet2", skipstartrows=1)
|
||||||
header = ExcelReaders.readxlsheet("./data/nutrional_information_5917.xlsx", "Sheet2", nrows=1)
|
header = ExcelReaders.readxlsheet("./data/nutrional_information_5917.xlsx", "Sheet2", nrows=1)
|
||||||
@ -22,20 +24,21 @@ for i = 1:length(header)
|
|||||||
df[header[i]] = data[2:end, i]
|
df[header[i]] = data[2:end, i]
|
||||||
end
|
end
|
||||||
|
|
||||||
function breeder(parent)
|
function mutate(parent)
|
||||||
|
randomCandidate(4)
|
||||||
end
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
fitness(candidate::DataFrames.DataFrame)
|
||||||
|
|
||||||
|
Calculate the fitness of the candidate, which is the
|
||||||
|
absolute value of the difference of TARGETCALORIES and the sum
|
||||||
|
of all calories in the meal.
|
||||||
|
"""
|
||||||
function fitness(candidate::DataFrames.DataFrame)
|
function fitness(candidate::DataFrames.DataFrame)
|
||||||
sum(+, candidate[:Calories])
|
abs(TARGETCALORIES - sum(+, candidate[:Calories]))
|
||||||
end
|
end
|
||||||
|
|
||||||
function breed(candidates::Array{DataFrames.DataFrame})
|
|
||||||
# Truncation selection, top 3 as parents.
|
|
||||||
# First, check everyone's fitness.
|
|
||||||
# Then, generate new solutions by selecting parents and breeding
|
|
||||||
sort!(candidates, by = x -> fitness(x))
|
|
||||||
parents = candidates[1:3]
|
|
||||||
end
|
|
||||||
|
|
||||||
function randRow()
|
function randRow()
|
||||||
# Generate a random row index
|
# Generate a random row index
|
||||||
@ -48,8 +51,43 @@ function randomCandidate(n::Integer)
|
|||||||
df[rows, :]
|
df[rows, :]
|
||||||
end
|
end
|
||||||
|
|
||||||
function generateInitialPopulation()
|
function generateInitialPopulation(lambda::Integer, candidateSize::Integer)
|
||||||
[randomCandidate(5) for i = 1:POPSIZE]
|
[randomCandidate(candidateSize) for i = 1:lambda]
|
||||||
end
|
end
|
||||||
|
|
||||||
|
function main()
|
||||||
|
# Generate the initial population.
|
||||||
|
pop = generateInitialPopulation(lambda, 4)
|
||||||
|
best = nothing
|
||||||
|
generationNum = 0
|
||||||
|
fit = nothing
|
||||||
|
parents = nothing
|
||||||
|
|
||||||
|
while generationNum != GENLIMIT || (best != nothing && fitness(best) != 0)
|
||||||
|
|
||||||
|
# Assess the fitness of parents
|
||||||
|
for parent in pop
|
||||||
|
fit = fitness(parent)
|
||||||
|
if best === nothing || fit < fitness(best)
|
||||||
|
best = parent
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
bestFitness = fitness(best)
|
||||||
|
|
||||||
|
sort!(pop, by = x -> fitness(x))
|
||||||
|
parents = pop[1:mu]
|
||||||
|
pop = parents
|
||||||
|
|
||||||
|
for p in parents
|
||||||
|
for i = 1:(lambda/mu)
|
||||||
|
push!(pop, mutate(p))
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
println("Generation $generationNum, best $best, fitness $bestFitness")
|
||||||
|
generationNum += 1
|
||||||
|
end
|
||||||
|
|
||||||
|
end
|
||||||
# search(generateInitialPopulation())
|
# search(generateInitialPopulation())
|
Loading…
Reference in New Issue
Block a user