Really filling out the experiment with knobs to turn, getting better

This commit is contained in:
Jacob Windle 2019-08-16 09:52:28 -04:00
parent cb61b910d7
commit 673e28b02c

View File

@ -4,6 +4,8 @@ import DataFrames
POPSIZE = 5
mu = 1
lambda = 4
GENLIMIT = 20
TARGETCALORIES = 1000
data = ExcelReaders.readxlsheet("./data/nutrional_information_5917.xlsx", "Sheet2", skipstartrows=1)
header = ExcelReaders.readxlsheet("./data/nutrional_information_5917.xlsx", "Sheet2", nrows=1)
@ -22,20 +24,21 @@ for i = 1:length(header)
df[header[i]] = data[2:end, i]
end
function breeder(parent)
function mutate(parent)
randomCandidate(4)
end
"""
fitness(candidate::DataFrames.DataFrame)
Calculate the fitness of the candidate, which is the
absolute value of the difference of TARGETCALORIES and the sum
of all calories in the meal.
"""
function fitness(candidate::DataFrames.DataFrame)
sum(+, candidate[:Calories])
abs(TARGETCALORIES - sum(+, candidate[:Calories]))
end
function breed(candidates::Array{DataFrames.DataFrame})
# Truncation selection, top 3 as parents.
# First, check everyone's fitness.
# Then, generate new solutions by selecting parents and breeding
sort!(candidates, by = x -> fitness(x))
parents = candidates[1:3]
end
function randRow()
# Generate a random row index
@ -48,8 +51,43 @@ function randomCandidate(n::Integer)
df[rows, :]
end
function generateInitialPopulation()
[randomCandidate(5) for i = 1:POPSIZE]
function generateInitialPopulation(lambda::Integer, candidateSize::Integer)
[randomCandidate(candidateSize) for i = 1:lambda]
end
function main()
# Generate the initial population.
pop = generateInitialPopulation(lambda, 4)
best = nothing
generationNum = 0
fit = nothing
parents = nothing
while generationNum != GENLIMIT || (best != nothing && fitness(best) != 0)
# Assess the fitness of parents
for parent in pop
fit = fitness(parent)
if best === nothing || fit < fitness(best)
best = parent
end
end
bestFitness = fitness(best)
sort!(pop, by = x -> fitness(x))
parents = pop[1:mu]
pop = parents
for p in parents
for i = 1:(lambda/mu)
push!(pop, mutate(p))
end
end
println("Generation $generationNum, best $best, fitness $bestFitness")
generationNum += 1
end
end
# search(generateInitialPopulation())