Writing some documentation for the functions included.

This commit is contained in:
Jacob Windle 2019-08-19 06:20:10 -04:00
parent 3c8fad2e50
commit 7f37d1aa65

View File

@ -25,7 +25,11 @@ for i = 1:length(header)
end
"""
Step through the parent, and randomly delete and update rows.S
Our mutator function
steps through the parent, and randomly selects the
allelles to delete. Will replace the alleles with new
alleles (meals).
"""
function mutate(parent)
@ -42,7 +46,6 @@ function mutate(parent)
# If we get tails, delete the row and push a new one to it.
end
println("TO DELETE $toDelete")
# Delete all rows we don't want at once.
DataFrames.deleterows!(child, toDelete)
@ -65,24 +68,38 @@ function fitness(candidate::DataFrames.DataFrame)
abs(TARGETCALORIES - sum(+, candidate[:Calories]))
end
"""
Helper function to generate a random row index
used by randomCandidate
"""
function randRow()
# Generate a random row index
abs(rand(Int) % size(df, 1)) + 1
end
"""
Helper function to generate a random candidate from the dataset.
n is the size of the candidate.
"""
function randomCandidate(n::Integer)
# Select n random rows from the dataset.
rows = [randRow() for i = 1:n]
df[rows, :]
end
"""
generateInitialPopulation(lambda::Integer, candidateSize::Integer)
From our dataset, generate an array of initial candidates to begin the search.
"""
function generateInitialPopulation(lambda::Integer, candidateSize::Integer)
[randomCandidate(candidateSize) for i = 1:lambda]
end
function main()
# Generate the initial population.
println("Entering main.")
pop = generateInitialPopulation(lambda, 4)
best = nothing
generationNum = 0
@ -90,8 +107,6 @@ function main()
parents = nothing
while generationNum <= GENLIMIT
println("Generation $generationNum")
# Assess the fitness of parents
for parent in pop
fit = fitness(parent)
@ -100,15 +115,15 @@ function main()
end
end
# Grab our best fitness for logging purposes.
bestFitness = fitness(best)
println("Sorting by fitness")
# Copy the best mu parents into the population.
sort!(pop, by = x -> fitness(x))
parents = pop[1:mu]
pop = deepcopy(parents)
println("Breeding new generation")
print("Parents $parents")
# Employ our (mu + lambda) strategy by generating lambda/mu kids.
for p in parents
for i = 1:(lambda/mu)
push!(pop, mutate(p))