import ExcelReaders import DataFrames POPSIZE = 5 mu = 1 lambda = 4 GENLIMIT = 20 TARGETCALORIES = 2000 data = ExcelReaders.readxlsheet("./data/nutrional_information_5917.xlsx", "Sheet2", skipstartrows=1) header = ExcelReaders.readxlsheet("./data/nutrional_information_5917.xlsx", "Sheet2", nrows=1) # Convert to symbols to build header row. for i = 1:length(header) tmp = header[i] tmp = Symbol(tmp) header[i] = tmp end header = dropdims(reshape(header, :, 1), dims=2) df = DataFrames.DataFrame() # Finally, construct our dataframe for i = 1:length(header) df[header[i]] = data[2:end, i] end """ Our mutator function steps through the parent, and randomly selects the allelles to delete. Will replace the alleles with new alleles (meals). """ function mutate(parent) # Copy the parent so we can do some work. child = deepcopy(parent) toDelete = [] for i in 1:size(parent, 1) if rand(Float64) > 0.5 # NOTE: make this tunable push!(toDelete, i) end # If we get tails, delete the row and push a new one to it. end # Delete all rows we don't want at once. DataFrames.deleterows!(child, toDelete) # Add new random rows from the ones we deleted for i in 1:length(toDelete) push!(child, df[randRow(), :]) end child end """ fitness(candidate::DataFrames.DataFrame) Calculate the fitness of the candidate, which is the absolute value of the difference of TARGETCALORIES and the sum of all calories in the meal. """ function fitness(candidate::DataFrames.DataFrame) abs(TARGETCALORIES - sum(+, candidate[:Calories])) end """ Helper function to generate a random row index used by randomCandidate """ function randRow() # Generate a random row index abs(rand(Int) % size(df, 1)) + 1 end """ Helper function to generate a random candidate from the dataset. n is the size of the candidate. """ function randomCandidate(n::Integer) # Select n random rows from the dataset. rows = [randRow() for i = 1:n] df[rows, :] end """ generateInitialPopulation(lambda::Integer, candidateSize::Integer) From our dataset, generate an array of initial candidates to begin the search. """ function generateInitialPopulation(lambda::Integer, candidateSize::Integer) [randomCandidate(candidateSize) for i = 1:lambda] end function main() # Generate the initial population. pop = generateInitialPopulation(lambda, 4) best = nothing generationNum = 0 fit = nothing parents = nothing while generationNum <= GENLIMIT # Assess the fitness of parents for parent in pop fit = fitness(parent) if best === nothing || fit < fitness(best) best = parent end end # Grab our best fitness for logging purposes. bestFitness = fitness(best) # Copy the best mu parents into the population. sort!(pop, by = x -> fitness(x)) parents = pop[1:mu] pop = deepcopy(parents) # Employ our (mu + lambda) strategy by generating lambda/mu kids. for p in parents for i = 1:(lambda/mu) push!(pop, mutate(p)) end end println("Generation $generationNum, best $best, fitness $bestFitness") generationNum += 1 end end # search(generateInitialPopulation())